
InfoEnh: Towards Multimodal Sentiment Analysis via Information
Bottleneck Filter and Optimal Transport Alignment

Yifeng Xie1,† Zhihong Zhu2,† Xuan Lu1 Zhiqi Huang2,∗ Haoran Xiong1

1Guangdong University of Technology, 2Peking University
evfxie@gmail.com, zhihongzhu@stu.pku.edu.cn,

{3221006905,3121006856}@mail2.gdut.edu.cn, zhiqihuang@pku.edu.cn
Abstract

In recent years, Multimodal Sentiment Analysis (MSA) leveraging deep learning has demonstrated exceptional
performance in a wide range of domains. Its success lies in effectively utilizing information from multiple modalities
to analyze sentiments. Despite these advancements, MSA is confronted with two significant challenges. Firstly,
each modality often has a surplus of unimportance data, which can overshadow the essential information. Secondly,
the crucial cues for sentiment analysis may conflict across different modalities, thereby complicating the analysis
process. These issues have a certain impact on the model’s effectiveness in MSA tasks. To address these
challenges, this paper introduces a novel method tailored for MSA, termed InfoEnh. This approach utilizes a
masking technique as the bottleneck for information filtering, simultaneously maximizing mutual information to
retain crucial data. Furthermore, the method integrates all modalities into a common feature space via domain
adaptation, which is enhanced by the application of optimal transport. Extensive experiments conducted on two
benchmark MSA datasets demonstrate the effectiveness of our proposed approach. Further analyzes indicate
significant improvements over the baselines.
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1. Introduction

Multi-modal learning has gained widespread pop-
ularity, emerging as a breakthrough in various
research domains and industries. At the same
time, there has been a growing research inter-
est in the field of multi-modal sentiment analysis
(MSA), a prominent task within multi-modal learn-
ing. MSA is a crucial component for understanding
human expression and interaction, encompass-
ing various aspects like user engagement (Spiess
and Schuldt, 2022), personalized recommenda-
tions (Chen et al., 2019b), conversational sys-
tems (Huang et al., 2023; Xie et al., 2023; Zhu
et al., 2023), content moderation (Yuan et al.,
2024), risk assessment (Ang and Lim, 2022) and
more. Its ability to accurately identify the senti-
ments of individuals involved can greatly improve
the performance of artificial intelligence products.

Generally speaking, different modalities present
distinct information, resulting in a wealth of data
that is significantly more robust than what any sin-
gle modality can provide. For example, consider
a word in a text with multiple meanings, each con-
veying different emotions depending on the con-
text (Zadeh et al., 2017). In such instance, the role
of additional modalities becomes particularly vital,
as they provide essential contextual cues that help
discern the ultimate emotion. In more intricate sce-
narios, like sarcasm (Castro et al., 2019), a single
modality proves insufficient to accurately encapsu-
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Figure 1: An example of Multimodal Sentiment
Analysis. The red rectangular boxes represent the
most critical features for sentiment in this modality.
The sample is selected from MOSI dataset.

late the underlying sentiment. Therefore, the key
to overcoming the current challenges in MSA lies in
the successful integration of significant information
from various modalities. Numerous works (Wang
et al., 2022; Yadav and Vishwakarma, 2023) have
been proposed, resulting in significant research
achievements and successes.

While significant progress has been made, we
have identified two primary challenges with exist-
ing methods: (1) Redundant Information. Re-
cent studies have highlighted the presence of sig-
nificant amounts of irrelevant or redundant informa-



tion in the modalities (Wu et al., 2023; Mao et al.,
2023). As shown in Figure 1(a), it is possible to
derive emotions expressed by the modalities from
the most critical features, rather than processing
all features within the model. Processing numer-
ous irrelevant or useless features can negatively
impact the model’s efficiency. Regrettably, exist-
ing models often overlook this aspect. (2) Con-
tradictory Modality Sentiment. As shown in Fig-
ure 1(b), different modalities may express varying
sentiments after processing. In other words, fea-
tures from different modalities may be ambiguous
and conflicting, which divergence can lead to con-
fusion in the model’s final judgment.

Motivated by the above observation, we propose
a novelty module termed InfoEnh to improve the
performance of MSA. InfoEnh initiates by identi-
fying the top-k features based on their weights,
followed by an element-wise multiplication with a
generated soft mask. These steps act as an in-
formation bottleneck, effectively filtering numerous
non-essential or irrelevant features. To ensure
that key features are not filtered out, we maximize
the mutual information between the features be-
fore and after this filtering process as a regula-
tion measure. Moreover, humans excel at dis-
tinguishing between different modalities of infor-
mation, whereas models often struggle with this
task (Xu et al., 2021a; Wei et al., 2023; Zeng et al.,
2023). This significant capability gap prompted our
exploration of a potential solution involving optimal
transport (OT). OT offers a method to quantify dis-
similarity between two distributions. Our hypothe-
sis suggests that leveraging OT can effectively inte-
grate diverse unimodal features into a shared sub-
space, bridging the distribution gap and thus cre-
ating a consistent and comprehensive representa-
tion in the unified multimodal space.

In summary, the major contributions of this pa-
per can be summarized as:

• We present a novel method for MSA designed
for easy and seamless integration with exist-
ing MSA frameworks. This innovative method
utilizing information bottleneck prioritizes the
removal of irrelevant features while safeguard-
ing essential and significant data.

• Unlike previous studies in MSA that primarily
focused on multimodal fusion, our research is
centered on multimodal representation. Our
proposed InfoEnh leverages the power of op-
timal transport. This integration equips the
model to handle even more intricate scenar-
ios, allowing the model to train the heteroge-
neous data of multiple modalities.

• Experimental results demonstrate the InfoEnh
achieves excellent performance on multi-
modal benchmarks based on the improve-

ment of each baseline. Furthermore, we of-
fer an in-depth analysis supported by lots of
results to illustrate the superiority of our pro-
posed method.

2. Related Work

2.1. Multimodal Sentiment Analysis
The MSA task is inherently challenging, requiring
the seamless integration of information from di-
verse modalities, including text, visual, audio and
more. It involves accurately capturing the intricate
interplay between these modalities, and acknowl-
edging the multimodal nature of human communi-
cation. Integrating diverse data types can lead to
a nuanced and precise sentiment analysis. This
complexity is further compounded by the potential
for conflicting yet complementary information, ren-
dering the task particularly challenging.

In essence, MSA is a subset of multi-modal
learning. The fusion on MSA can be broadly cat-
egorized into two approaches (Snoek et al., 2005;
Gadzicki et al., 2020): (1) Early fusion. In this ap-
proach, different modalities’ inputs are combined
at a shallow layer (Poria et al., 2016; Wang et al.,
2017; Guo et al., 2022), merging features from in-
dividual modalities into a shared model input pa-
rameter space. (2) Late fusion. Data from differ-
ent modes undergo modeling and feature extrac-
tion using distinct network structures. The features
extracted from these diverse modalities are com-
bined before the final output (Nojavanasghari et al.,
2016; Qian et al., 2023; Yu et al., 2023), unifying
them into a shared feature space. Various fusion
approaches in MSA are well-developed and have
shown significant progress.

However, advancing MSA requires more than
just focusing on the fusion module. It also ne-
cessitates the extraction of the most appropriate
features. Our work utilizes information bottleneck
to filter features and then harmonizes the feature
spaces of different modalities using optimal trans-
port. This strategy enhances the efficacy of MSA.

2.2. Information Bottleneck
The Information Bottleneck (IB) method (Tishby
et al., 2000) provides a strategy for obtaining an
intermediate variable Z that extracts the core in-
formation from the input embedding X, aligning it
more closely with the true output Y. The method
formulates an optimization challenge aimed at
compressing X while retaining maximal informa-
tion about Y. The objective is to maximize the
mutual information between the compressed rep-
resentation Z and Y, while imposing a constraint
to limit the mutual information between Z and X.



Actually, the IB method has been widely ap-
plied to various problems across different domains.
More recently, it has been utilized in the field of
deep learning, offering insights into the training
dynamics and generalization capabilities of deep
neural networks. (Tishby and Zaslavsky, 2015) ex-
plored the IB method within the context of deep
learning, suggesting that deep networks perform
an IB-like compression process due to their lay-
ered architecture. This concept was further de-
veloped by (Shwartz-Ziv and Tishby, 2017), which
empirically demonstrated the phases of compres-
sion and fitting during the training of deep models.
Despite its extensive applicability, the Information
Bottleneck method does have its limitations. One
significant challenge is the computational complex-
ity involved in evaluating mutual information for
continuous and high-dimensional variables. This
issue has been tackled using variational approxi-
mations (Alemi et al., 2017). As demonstrated, the
IB method has yielded numerous groundbreaking
insights and contributions.

In this work, we leverage the foundational princi-
ples of the IB method to enhance the performance
of MSA task. This is achieved by filtering out unim-
portant features and focusing on the most signif-
icant ones, while also maximizing the mutual in-
formation between the compressed and input vari-
ables. Our goal is to efficiently compress the infor-
mation while preserving the most vital feature.

2.3. Optimal Transport
Optimal Transport (OT) was initially used to solve
transportation problems (Monge, 1781), where a
certain amount of resources needs to be trans-
ported from one location to another, to find a mea-
surable map to minimize the cost of transporta-
tion. To put it mathematically, OT focuses on op-
timizing over transportation plan, which is a prob-
ability measure to preserve their respective quan-
tity (Kantorovich, 2006; Villani, 2021). In the field
of machine learning, OT has gained prominence
for its ability to define a geometrically meaning-
ful distance metric between probability distribu-
tions (Zhu et al., 2024), known as the Wasserstein
distance (Vaserstein, 1969).

OT has since been utilized in various NLP
tasks (Chen et al., 2019a; Cao and Zhang, 2022;
Bhardwaj et al., 2022; Cheng et al., 2024) and
multi-modal learning (Cao et al., 2022; Pramanick
et al., 2022; Chen et al., 2023) due to its ability to
establish a reasonable correspondence between
two distribution sets. It aligns the embeddings,
creates a common metric space between differ-
ent embeddings, and thereby facilitates transfer
learning (Alqahtani et al., 2021). Furthermore, OT
measures the distance between probability distri-
butions, enhancing machine translation models for
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Figure 2: The overall training process for MSA.

better source-target language similarity (Xu et al.,
2021b). It can also generate realistic text by map-
ping training data probability distributions to de-
sired output distributions (Nouri, 2022). In addi-
tion, it is widely applied in numerous theoretical
and practical contexts.

In this work, we utilize OT for domain adaptation
to multimodal embeddings. We leverage the the-
ory of optimal transport to align embeddings and
address the challenges in MSA.

3. Preliminaries

3.1. Problem Definition

Given the inputs x, each sample comprises three
modalities: text (t), visual (v) and audio (a). When
these multimodal inputs are processed by the
model f(·), it produces an output y ∈ [−3, 3] that
predicts the sentiment associated with each input.
The training process is defined by y = f(t, v, a|Θ),
where Θ represents the model parameters. Fur-
ther details on the model’s training procedure are
elaborated in Section 3.2. In essence, this task
is a regression problem, where the output score
indicates sentiment: zero represents neutral sen-
timent, positive scores indicate positive sentiment
and negative scores suggest negative sentiment.

3.2. Model Training

Upon entering the encoder, inputs from each
modality are transformed into their respective em-
beddings. These embeddings are then fused to
produce a predicted value. Following the previous
works (Hazarika et al., 2020; Zhang et al., 2023),
the model employs both predicted and actual val-
ues to calculate either the mean squared error loss
or the cross-entropy loss, to minimize the loss to
optimize the model. Most existing models priori-
tize feature integration, emphasizing the design of
sophisticated fusion modules.
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Figure 3: Illustration of InfoEnh: The embeddings are processed through FIB (§4.1) and FIA (§4.2).

4. Methodology

As mentioned above and illustrated in Figure 2,
our model for MSA resembles most existing mod-
els with one key distinction: after extracting modal-
ity features, we input the embeddings into our
proposed InfoEnh component, followed by the fu-
sion module. Existing fusions are already well-
developed. Therefore, our proposed InfoEnh fo-
cuses on obtaining the most relevant and consis-
tent features for incorporation into the architecture.

As shown in Figure 3, InfoEnh is composed of
two components: Feature Information Bottleneck
(FIB) and Feature Information Alignment (FIA).
FIB is designed to identify and select the most cru-
cial features, while FIA seeks to harmonize the fea-
tures from each modality within a unified distribu-
tion space. Further details on these components
can be found in Section 4.1 and 4.2.

4.1. Feature Information Bottleneck

Upon obtaining the embeddings from each modal-
ity, we often encounter an abundance of irrelevant
and non-essential features. However, for senti-
ment analysis, only the most pivotal features are
required in most cases. To address this, we utilize
the Feature Information Bottleneck (FIB). In the fol-
lowing, we provide a detailed description.

Initially, the input embedding E ∈ Rli×di un-
dergoes processing by a feed-forward neural net-
work (FNN) layer, followed by a pooling layer. In
the pooling layer, the top-k feature weights are se-
lected based on their highest values, thereby iden-
tifying these features as particularly significant. It
is important to highlight that after extracting the
features from different modalities, the dimensions
may not be uniform across models. This step en-
sures the standardization of dimensions to k.

Subsequently, the new representation e ∈ Rk×d

undergoes an element-wise multiplication with a
soft mask m ∈ Rk×d to selectively filter out non-
essential or irrelevant feature information. The soft
mask is obtained from the element-wise product of
a gating vector g and a hard mask mh. The gating
vector is produced from the embedding matrix after
it has been processed through a FNN layer and
a nonlinear activation function σ, such as sigmoid
function (Han and Moraga, 1995), which assigns
a value between 0 and 1 to each feature.And the
assignment of values in the hard mask depends
on the gating vector: if a value within the gating
vector surpasses the threshold (set here at 0.5),
the corresponding hard mask value is assigned as
1, thereby preserving the feature. Conversely, if
the threshold is not met, the hard mask value is
set to 0, effectively eliminating the feature. Thus,
we obtain the filtered embedding, denoted as z ∈
Rk×d. The formulas as follows:

g = σ(w · e + b) (1)
m = mh ⊙ g (2)
z = e ⊙ m (3)

where w and b are the parameters of the FFN layer,
⊙ denotes the element-wise multiplication.

The information bottleneck principle is designed
to optimize the representation, aiming to maximize
the mutual information pertaining to the target out-
put. Concurrently, it seeks to minimize the reten-
tion of input information. This approach ensures
that the representation captures the most relevant
aspects of the input embedding. However, the new
feature z may result in the loss of key information.
To address this, we aim to effectively eliminate re-
dundant features while preserving significant mu-
tual information between the new and original fea-
tures, thus retaining essential information. To ac-
complish this objective, we use a similarity function



sim(·) to produce the InfoNEC loss (van den Oord
et al., 2018; Wu et al., 2023).

sim(e, z) = exp( e
||e||2

⊙ z
||z||2

) (4)

Li = E(e,z)

[
−

n∑
i=1

log
exp(sim(ei, zi))∑
m
k=1exp(sim(e−

k , zi))

]
, i ∈ {t, v, a} (5)

LFIB = α(Lt + Lv + La) (6)

where || · ||2 denotes the Euclidean norm, n rep-
resents the number of samples in a batch, e− de-
notes the negative samples, indicating that their
sentiment differs from the sentiment of the sample
zi. The expected value E refers to the mean value
under this probability distribution, and α is a hyper-
meter. In summary, we introduce an additional
loss functionLFIB , generated by each modalityLi,
which serves to augment the task loss throughout
the training process.

4.2. Feature Information Alignment
Although key features are extracted for different
modalities, the embeddings often reside in dis-
parate heterogeneous spaces. The alignment pro-
cess is crucial for mapping features from varied
distributions into a unified feature space. This en-
ables the model to more effectively discern the re-
lationships between modalities, distinguishing be-
tween features that are consistent and those that
are contradictory, to inform the final sentiment
analysis.

Optimal transport (OT) offers a method for mea-
suring and aligning the feature distributions across
these diverse modalities. As shown in Figure 4,
OT moves different modality embeddings to a uni-
fied aligned space using an optimal transport plan.
This strategy effectively addresses spatial hetero-
geneity by minimizing the Wasserstein distance
between the distributions.
(a) (b)

Figure 4: An illustration of the optimal trans-
port process: Different colors represent different
modalities. Lines represent distributions, while
markers represent the embeddings.

Specifically, we formulate the fusion procedure
of multimodal knowledge as an optimal transport
problem. Here, we only focus on the discrete situ-
ation, which is more related to our framework. Sup-

Algorithm 1 Fusion of two modality embeddings
using optimal transport.
Initialize: Entropy parameter λ, the maximum
number N of iterations.
Input: One modality embedding Ei ∈ Rk×d, other
modality embedding Ej ∈ Rk×d.
Output: Unified embedding Ei→j ∈ Rk×d.

1: Calculate cost metric C = 1− ET
i Ej .

2: Initialize E(0)
j = 1, δ = 0.01, ∆ = ∞.

3: In every loop, calculate the OT matrix.
4: for kt = 1, 2, ..., N do
5: Update E(kt)

i = Ei/(exp(−λC)E(kt−1)
j )

6: Update E(kt)
j = Ej/(exp(−λC)E(kt−1)

i )

7: Update ∆ = 1
n

∑
|E(kt)

j − E(kt−1)
j |

8: if ∆ < δ then
9: break.

10: end if
11: end for
12: Obtain the OT matrix:

P∗ = diag(Uk) exp(−λC)diag(Vk).
13: Calculate the OT plan POT =< P∗,C >.
14: Obtain unified embedding Ei→j = EiPT

OT

pose the distribution U corresponds to one embed-
ding, and the distribution V corresponds to another
embedding. It’s important to note that the number
of things transported in a distribution cannot ex-
ceed the sum of the quantities of the original distri-
bution. In mathematical terms, we represent these
distributions as U =

∑
i uiδi and V =

∑
i viδi,

where δi is the Dirac function. In our work, we sim-
plify the process by setting the weights ui = 1/m
and vi = 1/n, where m and n represent the length
of the embeddings. Next, we aim to compute the
optimal transport plan Pot, which seeks to obtain
an optimal transport matrix to minimize the trans-
port cost C. In our work, we set C = 1− UT V.

Q(U,V) = {R+|P1m = U,PT 1n = V} (7)
Pot(U,V|C) = inf

P∈Q(U,V)
< P,C >F (8)

< P,C >F =
∑
i,j

PijCij (9)

The formulas for the optimal transport plan Pot

are defined using the Frobenius inner product de-
noted as < ,>F , and the feasible set U satisfies
all the conditions for transport. In other words, the
OT problem aims to find the optimal transport plan
subject to the constraints of the feasible set.

The above represents a constrained linear pro-
gramming problem, and direct optimization of the
objectives is usually time-consuming. Therefore,
we will introduce the Sinkhorn algorithm (Cuturi,
2013) and incorporate it into the process. Firstly,



Model
MOSI MOSEI

MAE (↓) Corr (↑) Acc-7 (↑) Acc-2 (↑) F1 (↑) MAE (↓) Corr (↑) Acc-7 (↑) Acc-2 (↑) F1 (↑)
FDMER† 0.724 0.788 44.10 - /84.60 - / 84.70 0.536 0.773 54.10 - / 86.19 - / 85.80
DBF† 0.693 0.801 44.80 85.10 / 86.90 85.10 / 86.90 0.523 0.772 54.20 84.30 / 86.40 84.80 / 86.20
ALMT† 0.683 0.805 49.42 84.55 / 86.43 84.57 / 86.47 0.526 0.779 54.28 84.78 / 86.79 85.19 / 86.86
MISA‡ 0.796 0.766 42.51 80.49 / 81.88 80.47 / 81.98 0.571 0.723 52.15 82.54 / 84.18 82.54 / 83.86
MISA + InfoEnh 0.782 0.772 43.26 80.97 / 82.12 81.02 / 82.18 0.559 0.735 52.75 82.98 / 84.63 83.02 / 84.68
self-MM‡ 0.720 0.789 45.68 82.33 / 84.75 82.71 / 84.86 0.536 0.758 53.45 82.49 / 84.88 82.51 / 84.91
self-MM + InfoEnh 0.709 0.802 46.12 84.40 / 85.65 84.43 / 85.72 0.530 0.764 53.82 82.98 / 85.20 83.01 / 85.24
MMIM‡ 0.708 0.796 46.25 82.81 / 84.95 82.97 / 85.05 0.532 0.765 53.93 82.29 / 85.78 82.38 / 85.86
MMIM + InfoEnh 0.698 0.808 46.77 84.37 / 85.49 84.42 / 85.58 0.524 0.776 54.16 83.27 / 86.24 83.36 / 86.40
ConFEDE‡ 0.695 0.806 48.62 84.43 / 86.26 84.52 / 86.32 0.528 0.778 54.20 84.48 / 86.56 84.60 / 86.72
ConFEDE + InfoEnh 0.683 0.805 49.25 84.57 / 86.65 84.60 / 86.74 0.520 0.785 55.38 84.78 / 86.98 84.82 / 87.01

Table 1: Main results on two benchmark datasets. The “Acc-2” value corresponds to “negative/non-
negative”, and the “F1” value corresponds to “negative/positive”. Results marked with “†” indicate that
the code has not been released. Results marked with “‡” represent we re-implemented models, which
achieved statistical improvements over the baselines with p < 0.05. Results highlighted in bold signify
improvements over the baselines.

Pot is introduced entropy regularization h with a hy-
perparameter λ, which makes the feasible area of
the original problem smoother:

Pot,λ(U,V|C) = min
P

< P,C >F − 1

λ
h(P) (10)

By taking the partial derivative of the Lagrange
function, we obtain an approximate optimization
solution with a reduced number of loop iterations,
significantly reducing the computational cost. In
our proposed framework, when we combine the
definitions mentioned earlier, we will obtain an op-
timal transportation plan P∗:

P∗ = diag(U(k)) exp(−λC)diag(V(k)) (11)

where k denotes the iteration and in each iteration
to solve: U(k) = U/(exp(−λC)V(k−1)) and V(k) =
V/(exp(−λC)T U(k)).

To align the embeddings of the three modalities
in the same space while retaining modality-specific
information, each modality should adapt to the do-
mains of the other two modalities.

We firstly obtain the transported feature embed-
dings using OT method, as demonstrated in Al-
gorithm 1. These embeddings are denoted as
Ei→j ∈ Rk×d and represent the features trans-
ported from modality i to modality j. Subse-
quently, we obtain a new feature embedding for
each modality E′

i ∈ Rk×3d by concatenating the
original modality embedding with the two trans-
ported embeddings after domain adaptation. This
concludes the optimization phase of the represen-
tations, which are then utilized for fusion in the pre-
vious model.

Ei→j = EiPT
OT (i, j), i ̸= j, i, j ∈ {t, v, a} (12)

E′

i = concat(Ei,Ei→j ,Ei→k), i ̸= j, j ̸= k, i ̸= k
(13)

5. Experiment

5.1. Experiment Setup

Datasets. The experiments were conducted on
two publicly available multimodal sentiment analy-
sis datasets: MOSI (Zadeh et al., 2016) and MO-
SEI (Zadeh et al., 2018). MOSI consists of a
collection of YouTube monologues where speak-
ers share their opinions on various topics, includ-
ing movies. It contains 93 videos from 89 unique
speakers, totaling 2,199 movie-related samples.
These samples are categorized into 1,284 train-
ing samples, 229 validation samples, and 686 test
samples. MOSEI extends MOSI by providing a
more extensive collection with 23,453 video clips
from 1,000 unique speakers, thus offering a more
comprehensive resource for analysis.

Evaluation Metrics. Following the previous
works (Hazarika et al., 2020; Han et al., 2021;
Yu et al., 2023), we utilize the following metrics
to evaluate the performance of our model: Mean
Absolute Error (MAE), Correlation of the model’s
prediction with human (Corr), Binary Classification
Accuracy (Acc-2), Seven Classification Accuracy
(Acc-7), and F1-score (F1). By employing these
metrics, we aim to provide a thorough and
nuanced assessment of the performance.

Baselines. To comprehensively validate the per-
formance of our InfoEnh, we make a compar-
ison with several advanced and state-of-the-art
methods, including: FDMER (Yang et al., 2022),
DBF (Wu et al., 2023), ALMT (Zhang et al.,
2023), MISA (Hazarika et al., 2020), self-MM (Yu
et al., 2021), MMIM (Han et al., 2021) and Con-
FEDE (Yang et al., 2023).



Model MOSI MOSEI
MAE (↓) Corr (↑) Acc-7 (↑) Acc-2 (↑) F1 (↑) MAE (↓) Corr (↑) Acc-7 (↑) Acc-2 (↑) F1 (↑)

self-MM + InfoEnh 0.709 0.802 46.12 84.40 / 85.65 84.43 / 85.72 0.530 0.764 53.82 82.98 / 85.20 83.01 / 85.24
w/o FIA 0.712 0.794 46.01 83.98 / 85.10 84.02 / 85.14 0.533 0.763 53.66 82.72 / 84.92 82.78 / 84.95
w/o FIB 0.716 0.792 45.83 83.42 / 84.96 83.46 / 84.99 0.533 0.760 53.58 82.60 / 84.90 82.64 / 84.96
w/o InfoEnh 0.720 0.789 45.68 82.33 / 84.75 82.71 / 84.86 0.536 0.758 53.45 82.49 / 84.88 82.51 / 84.91
ConFEDE + InfoEnh 0.683 0.805 49.25 84.57 / 86.65 84.60 / 86.74 0.520 0.785 55.38 84.78 / 86.98 84.82 / 87.01
w/o FIA 0.688 0.804 49.04 84.52 / 86.52 84.58 / 86.55 0.522 0.785 54.68 84.71 / 86.85 84.75 / 86.92
w/o FIB 0.692 0.800 48.78 84.46 / 86.32 84.50 / 86.36 0.528 0.780 54.32 84.58 / 86.72 84.66 / 86.79
w/o InfoEnh 0.695 0.806 48.62 84.43 / 86.26 84.52 / 86.32 0.528 0.778 54.20 84.48 / 86.56 84.60 / 86.72

Table 2: Experiment results of ablation study for each component across different datasets.

Methods w/o InfoEnh w/ InfoEnh
Acc-2 (↑) F1 (↑) Acc-2 (↑) F1 (↑)

ConFEDE 84.48 84.60 84.78 84.82
w/o Audio 83.21 83.83 84.04 84.16
w/o Visual 81.83 82.33 82.65 83.68
w/o Text 55.23 54.45 66.75 64.80

Table 3: Comparison of accuracy for missing
modalities on the MOSEI dataset.

Implementation Details. The reproducible
baseline models and the novel InfoEnh we
propose are implemented using the PyTorch
framework (Paszke et al., 2017). All experiments
were conducted on a single Intel Xeon(R) CPU
equipped with an NVIDIA RTX 3080 Ti GPU. The
hyperparameter α, which adjusts the loss function
of FIB, is set to 0.5. In the interest of a fair and
equitable comparison, we adhered to the training
configurations detailed in the original publications
for each model, including the choice of loss func-
tions, batch sizes, and learning rate schedules.
This approach ensures that the performance of
our proposed model is benchmarked against
established methods under identical conditions.

5.2. Main Results
Table 1 presents the baseline results alongside
those achieved by incorporating InfoEnh, high-
lighting improvements on the MOSI and MOSEI
datasets. The detailed examination of the out-
comes yields several observations:

A pivotal observation emerges from the Mean
Absolute Error (MAE) comparison, where InfoEnh
demonstrates superior performance over the ex-
isting baselines. This indicates that InfoEnh is
particularly effective in deriving meaningful repre-
sentations for MSA. Moreover, InfoEnh achieves
impressive improvements about Correlation (Corr)
scores on both datasets, affirming its adeptness in
discerning sentiment-pertinent features. This ad-
vancement not only highlights the model’s analyt-
ical precision but also solidifies its reputation for

delivering reliable and robust performance.
One of the most remarkable achievements of In-

foEnh is its exemplary performance in the realm of
fine-grained sentiment classification, represented
as “Acc-7”. This task, recognized for its complexity,
sees InfoEnh significantly surpassing the baseline,
as evidenced by a remarkable 1.18% improvement
in ConFEDE on the MOSEI dataset. This notable
enhancement can be ascribed to the model’s ad-
vanced feature filtering and alignment strategies,
meticulously designed to identify and accentuate
intricate sentiment nuances. In summary, the re-
sults provide strong evidence of InfoEnh’s consis-
tent capacity to enhance the performance.

5.3. Ablation Study

5.3.1. Effects of Different Components

To assess the impact of individual components
within InfoEnh, a series of ablation experiments
on MOSEI and MOSEI was conducted, and the
results are summarized in Table 2. We selected
self-MM and ConFEDE for comparison.

An initial observation from our experiments high-
lighted a notable decrease in performance upon
the removal of FIB. Specifically, when we remove
the FIB and directly utilize the top-k embeddings,
the model’s effectiveness markedly diminished.
Furthermore, we explored the impact of removing
the FIA, which is instrumental in aligning features
across different modalities. These experiments
consistently demonstrated the effectiveness of us-
ing optimal transport to align the features on differ-
ent domains.

The ablation results unequivocally demonstrate
a performance decrement with the removal of each
component, particularly with FIB, which highlights
its critical role in the model’s success. These find-
ings robustly validate the importance of the indi-
vidual elements incorporated into InfoEnh, offer-
ing clear evidence of their substantial contributions
to the model’s superior performance and affirming
the model’s overall efficacy and resilience in multi-
modal sentiment analysis tasks.



And I am gonna  it 
an eight out of ten

Example 1: (Truth: 2.2)

MMIM:
Prediction: 1.965
ABS: 0.235 

Chuckle be forewarn-
ed low expectations

Example 2: (Truth: -1.2)

MMIM + FIB:
Prediction: 2.002
ABS: 0.198 

MMIM + InfoEnh:
Prediction: 2.156
ABS: 0.044 

MMIM:
Prediction: 2.013
ABS: 3.213 

MMIM + FIB:
Prediction: 1.205
ABS: 2.405 

MMIM + InfoEnh:
Prediction: -0.600
ABS: 0.600 

Figure 5: Case study of the baseline added InfoEnh’s component.

5.3.2. Effects of Different Modalities

Table 3 showcases the results of an ablation study
designed to assess the contribution of each indi-
vidual modality, aiming to elucidate their respec-
tive impacts more thoroughly. We methodically re-
moved one modality from the baseline model. The
findings consistently indicated that the omission of
any modality, particularly the text modality, led to
a significant decline in performance across various
evaluation metrics. This observation underscores
the intrinsic value of a multimodal approach, where
each modality contributes distinctively to the anal-
ysis, thereby emphasizing the collaborative effect
of diverse input data.

Furthermore, the integration of our InfoEnh com-
ponent into the baseline model demonstrated its
capability to mitigate the effects of missing modal-
ities. Notably, in scenarios where the critical
text modality was absent, the incorporation of In-
foEnh resulted in substantial enhancements, with
improvements of 11.52% in Acc-2 and 10.35% in
F1 scores. This underscores InfoEnh’s effective-
ness and robustness in bolstering the model’s re-
silience against the absence of key modalities.

5.4. Case Study
To further illustrate the advantages of our model
compared to existing baselines in MSA, we
present case studies as depicted in Figure 5. We
initially integrate the FIA module, followed by the
comprehensive integration of the InfoEnh mod-
ule. These case studies reveals that the previ-
ous model occasionally incurs significant errors,
which are markedly reduced after the stepwise ad-
dition of InfoEnh components. These improve-
ments underscore our proposed InfoEnh’s capabil-
ity in enhancing the accuracy of sentiment predic-
tions, showcasing its utility in refining and optimiz-
ing sentiment analysis processes.

5.5. Interpretability of InfoEnh

5.5.1. Visualization of Heat Map

In this section, we delve into the interpretability of
InfoEnh by employing Grad-CAM (Selvaraju et al.,

2017) to generate heatmaps for images and text.
As shown in Figure 6, within the image modality,
the smile of the little boy is assigned the highest
weight, signifying its importance. Similarly, in the
text modality, the term “great”, with its positive con-
notation, receives the highest weight. These key
elements adeptly encapsulate the sentiment inher-
ent in each modality, providing a clear and concise
representation of the underlying emotional con-
tent. The precision and focus exhibited in these
heatmaps can be largely attributed to the function-
ality of the FIA module within InfoEnh. This com-
ponent plays a critical role in sifting through the
modalities to discard any irrelevant or superfluous
information, thereby highlighting the features that
are most salient and consequential.

Visual:

Text:

Figure 6: Visual explanations and textual attention
map for a sample from MOSI dataset.

5.5.2. Visualization of Modality
Representations

In Figure 7, we present a visualization of the modal
embeddings within a 2D feature space, utilizing
the t-SNE technique (van der Maaten and Hin-
ton, 2008) on the MOSI dataset. We compare the
embeddings before and after the integration of In-
foEnh into the baseline. Following the integration
of InfoEnh, it is evident that the inter-modality in-
formation becomes more cohesive, with a notable
reduction in the distance between modalities, il-
lustrating the InfoEnh’s effectiveness in fostering
closer alignment and concentration of modal infor-
mation. It proves that InfoEnh plays a pivotal role
in refining and elevating the quality of MSA by en-



suring a more harmonious and interconnected rep-
resentation of data across varying modalities.

(a) ConFEDE (w/0 InfoEnh) (b) ConFEDE (w/ InfoEnh)

Figure 7: Visualization of modality representations
in 2D space by using t-SNE.

6. Conclusion

The introduced InfoEnh in this work addresses sig-
nificant challenges in multimodal sentiment anal-
ysis by effectively filtering irrelevant data and
aligning features across different modalities us-
ing a novel approach. The proposed method
demonstrates improved performance on bench-
mark datasets, showcasing its potential to en-
hance the accuracy and robustness of sentiment
analysis models. The integration of feature infor-
mation bottleneck and optimal transport alignment
contributes to the model’s ability to capture nu-
anced sentiment cues and maintain consistency
across modalities. The experimental results and
ablation studies validate the importance of each
component, highlighting the overall efficacy of In-
foEnh in multimodal sentiment analysis.
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